A Consolidated Picture of the Stagnated Fuel in **Cryogenic Direct-Drive Implosions on OMEGA**

High adiabat ($\alpha > 3.5$) Long wavelength modes

Low adiabat (α < 3.5) Long wavelength modes and short-scale mix

X-ray core emission Vormalized emission/Y^{0.57} 3 Experiment 2 Simulation 1 2.5 3.5 1.5 2.0 3.0 Adiabat

100µm

P. B. Radha

Laboratory for Laser Energetics University of Rochester

National Implosion Stagnation Physics Group March 8-9, 2016 Lawrence Livermore National Labs CA

Fiche #

Inferred hot spot pressure is lower than simulated for low-adiabat implosions ($\alpha < 3.5$)

- Absolute pressures decrease with increasing calculated convergence or decreasing calculated adiabat
 - Hot spot radius is larger than simulated for low adiabat implosions (Marshall)
 - Significant T_{ion} variations are measured for all implosions (Knauer)
 - Experimental neutron rate is truncated relative to simulation for all implosions

- Normalized emission from the core increases with decreasing calculated adiabat

- A number of hypotheses have been proposed
 - long wavelength asymmetries [laser beam imbalances] high and low adiabat
 - Too much mass in the hot spot prior to deceleration [short scale mix due to imprint/jets; relaxation at inner boundary due to secondary shocks, EOS errors] – high and low adiabat
 - Incoming shell density is too low (ineffective piston) [imprint growth at ablation front] – low adiabat
- Measurements addressing each hypothesis are in progress

Hotspot pressure is the primary metric of OMEGA direct-drive cryogenic target performance

Hotspot pressure is derived from observations

 $\begin{aligned} \text{Yield} &= \int_{\Delta t_{\text{burn}}} dt \int_{V_{hs}} n_D n_T < \sigma v > dV \\ \text{Yield} &\sim n_D n_T T^2 \left(\int_{V_{hs}} \frac{\langle \sigma v \rangle}{T^2} dV \right) \Delta t_{\text{burn}} \\ & \swarrow \gamma \qquad & \swarrow \gamma \qquad & \swarrow \gamma \end{aligned}$

- The highest pressure to date is P_{hs} =56±7 Gbar to be compared to the simulated value of 80 Gbar. $C_r < 17$ and $\alpha > 3.5$ proceed close to 1-D.
- DD requires $P_{hs} > 120$ Gbar; $C_r > 22$; $\alpha = 1.5-3$

Multidimensional effects are believed to be primarily responsible for pressure degradation in high adiabat implosions

- Multidimensional effects (result in RKE in addition to 1D)
 - Beam-to-beam variations T_{ion} variations, burn truncation
 - Target offset T_{ion} variations
 - Isolated defects, stalk/glue etc. burn truncation

Neutron averaged V≈100km/s

Radha Bahukutumbi LLE

Measurements show earlier peak burn and burn truncation

Additional performance degradation in low-adiabat implosions is from short-scale mix

- 1D effects (speculative)
 - Is the density of the incoming shell low (shock mistiming, preheat?)

- Is there more mass in the hotspot from 1D effects? (excess emission from hotspot)

- Multidimensional effects
 - Beam-to-beam variations T_{ion} variations, burn truncation
 - Target offset T_{ion} variations
 - Isolated defects, stalk/glue etc. burn truncation,

excess emission from hotspot

- Laser imprint – ineffective piston, more mass in the hotspot –

excess emission from hotspot

Hypotheses/Understanding

Additional performance degradation for low-adiabat implosions is caused by short-scale mix at the ablation front

TC12327

